metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.40C24, D20.35C23, 2- (1+4)⋊4D5, Dic10.35C23, C5⋊5(Q8○D8), (C5×D4).39D4, (C5×Q8).39D4, C4○D4.17D10, C20.272(C2×D4), D4⋊D5.2C22, (C2×Q8).93D10, C4.40(C23×D5), Q8⋊D5.3C22, D4.21(C5⋊D4), Q8.Dic5⋊13C2, C5⋊2C8.19C23, Q8.21(C5⋊D4), D4.28(C22×D5), (C5×D4).28C23, D4.D5.3C22, D4.9D10⋊12C2, D4.8D10⋊11C2, Q8.28(C22×D5), (C5×Q8).28C23, C20.C23⋊12C2, C5⋊Q16.4C22, (C2×C20).121C23, C4○D20.34C22, C10.174(C22×D4), (C5×2- (1+4))⋊3C2, D4.10D10⋊10C2, (Q8×C10).154C22, C4.Dic5.32C22, (C2×Dic10).211C22, C4.78(C2×C5⋊D4), (C2×C5⋊Q16)⋊32C2, (C2×C10).88(C2×D4), C22.9(C2×C5⋊D4), C2.47(C22×C5⋊D4), (C5×C4○D4).30C22, (C2×C4).105(C22×D5), (C2×C5⋊2C8).185C22, SmallGroup(320,1510)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 726 in 248 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2 [×5], C4, C4 [×3], C4 [×6], C22 [×3], C22 [×2], C5, C8 [×4], C2×C4 [×3], C2×C4 [×12], D4, D4 [×3], D4 [×7], Q8, Q8 [×3], Q8 [×9], D5, C10, C10 [×4], C2×C8 [×3], M4(2) [×3], D8, SD16 [×6], Q16 [×9], C2×Q8 [×3], C2×Q8 [×5], C4○D4, C4○D4 [×3], C4○D4 [×9], Dic5 [×3], C20, C20 [×3], C20 [×3], D10, C2×C10 [×3], C2×C10, C8○D4, C2×Q16 [×3], C4○D8 [×3], C8.C22 [×6], 2- (1+4), 2- (1+4), C5⋊2C8, C5⋊2C8 [×3], Dic10 [×3], Dic10 [×3], C4×D5 [×3], D20, C2×Dic5 [×3], C5⋊D4 [×3], C2×C20 [×3], C2×C20 [×6], C5×D4, C5×D4 [×3], C5×D4 [×3], C5×Q8, C5×Q8 [×3], C5×Q8 [×3], Q8○D8, C2×C5⋊2C8 [×3], C4.Dic5 [×3], D4⋊D5, D4.D5 [×3], Q8⋊D5 [×3], C5⋊Q16 [×9], C2×Dic10 [×3], C4○D20 [×3], D4⋊2D5 [×3], Q8×D5, Q8×C10 [×3], Q8×C10, C5×C4○D4, C5×C4○D4 [×3], C5×C4○D4 [×3], C20.C23 [×3], C2×C5⋊Q16 [×3], Q8.Dic5, D4.8D10 [×3], D4.9D10 [×3], D4.10D10, C5×2- (1+4), D20.35C23
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, C5⋊D4 [×4], C22×D5 [×7], Q8○D8, C2×C5⋊D4 [×6], C23×D5, C22×C5⋊D4, D20.35C23
Generators and relations
G = < a,b,c,d,e | a20=b2=e2=1, c2=d2=a10, bab=a-1, ac=ca, ad=da, eae=a11, bc=cb, bd=db, ebe=a15b, dcd-1=a10c, ce=ec, de=ed >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(34 40)(35 39)(36 38)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(78 80)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)(95 100)(96 99)(97 98)(101 117)(102 116)(103 115)(104 114)(105 113)(106 112)(107 111)(108 110)(118 120)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 130)(128 129)(137 140)(138 139)(141 153)(142 152)(143 151)(144 150)(145 149)(146 148)(154 160)(155 159)(156 158)
(1 98 11 88)(2 99 12 89)(3 100 13 90)(4 81 14 91)(5 82 15 92)(6 83 16 93)(7 84 17 94)(8 85 18 95)(9 86 19 96)(10 87 20 97)(21 103 31 113)(22 104 32 114)(23 105 33 115)(24 106 34 116)(25 107 35 117)(26 108 36 118)(27 109 37 119)(28 110 38 120)(29 111 39 101)(30 112 40 102)(41 133 51 123)(42 134 52 124)(43 135 53 125)(44 136 54 126)(45 137 55 127)(46 138 56 128)(47 139 57 129)(48 140 58 130)(49 121 59 131)(50 122 60 132)(61 149 71 159)(62 150 72 160)(63 151 73 141)(64 152 74 142)(65 153 75 143)(66 154 76 144)(67 155 77 145)(68 156 78 146)(69 157 79 147)(70 158 80 148)
(1 57 11 47)(2 58 12 48)(3 59 13 49)(4 60 14 50)(5 41 15 51)(6 42 16 52)(7 43 17 53)(8 44 18 54)(9 45 19 55)(10 46 20 56)(21 73 31 63)(22 74 32 64)(23 75 33 65)(24 76 34 66)(25 77 35 67)(26 78 36 68)(27 79 37 69)(28 80 38 70)(29 61 39 71)(30 62 40 72)(81 122 91 132)(82 123 92 133)(83 124 93 134)(84 125 94 135)(85 126 95 136)(86 127 96 137)(87 128 97 138)(88 129 98 139)(89 130 99 140)(90 131 100 121)(101 149 111 159)(102 150 112 160)(103 151 113 141)(104 152 114 142)(105 153 115 143)(106 154 116 144)(107 155 117 145)(108 156 118 146)(109 157 119 147)(110 158 120 148)
(1 35)(2 26)(3 37)(4 28)(5 39)(6 30)(7 21)(8 32)(9 23)(10 34)(11 25)(12 36)(13 27)(14 38)(15 29)(16 40)(17 31)(18 22)(19 33)(20 24)(41 71)(42 62)(43 73)(44 64)(45 75)(46 66)(47 77)(48 68)(49 79)(50 70)(51 61)(52 72)(53 63)(54 74)(55 65)(56 76)(57 67)(58 78)(59 69)(60 80)(81 110)(82 101)(83 112)(84 103)(85 114)(86 105)(87 116)(88 107)(89 118)(90 109)(91 120)(92 111)(93 102)(94 113)(95 104)(96 115)(97 106)(98 117)(99 108)(100 119)(121 147)(122 158)(123 149)(124 160)(125 151)(126 142)(127 153)(128 144)(129 155)(130 146)(131 157)(132 148)(133 159)(134 150)(135 141)(136 152)(137 143)(138 154)(139 145)(140 156)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(34,40)(35,39)(36,38)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,117)(102,116)(103,115)(104,114)(105,113)(106,112)(107,111)(108,110)(118,120)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,160)(155,159)(156,158), (1,98,11,88)(2,99,12,89)(3,100,13,90)(4,81,14,91)(5,82,15,92)(6,83,16,93)(7,84,17,94)(8,85,18,95)(9,86,19,96)(10,87,20,97)(21,103,31,113)(22,104,32,114)(23,105,33,115)(24,106,34,116)(25,107,35,117)(26,108,36,118)(27,109,37,119)(28,110,38,120)(29,111,39,101)(30,112,40,102)(41,133,51,123)(42,134,52,124)(43,135,53,125)(44,136,54,126)(45,137,55,127)(46,138,56,128)(47,139,57,129)(48,140,58,130)(49,121,59,131)(50,122,60,132)(61,149,71,159)(62,150,72,160)(63,151,73,141)(64,152,74,142)(65,153,75,143)(66,154,76,144)(67,155,77,145)(68,156,78,146)(69,157,79,147)(70,158,80,148), (1,57,11,47)(2,58,12,48)(3,59,13,49)(4,60,14,50)(5,41,15,51)(6,42,16,52)(7,43,17,53)(8,44,18,54)(9,45,19,55)(10,46,20,56)(21,73,31,63)(22,74,32,64)(23,75,33,65)(24,76,34,66)(25,77,35,67)(26,78,36,68)(27,79,37,69)(28,80,38,70)(29,61,39,71)(30,62,40,72)(81,122,91,132)(82,123,92,133)(83,124,93,134)(84,125,94,135)(85,126,95,136)(86,127,96,137)(87,128,97,138)(88,129,98,139)(89,130,99,140)(90,131,100,121)(101,149,111,159)(102,150,112,160)(103,151,113,141)(104,152,114,142)(105,153,115,143)(106,154,116,144)(107,155,117,145)(108,156,118,146)(109,157,119,147)(110,158,120,148), (1,35)(2,26)(3,37)(4,28)(5,39)(6,30)(7,21)(8,32)(9,23)(10,34)(11,25)(12,36)(13,27)(14,38)(15,29)(16,40)(17,31)(18,22)(19,33)(20,24)(41,71)(42,62)(43,73)(44,64)(45,75)(46,66)(47,77)(48,68)(49,79)(50,70)(51,61)(52,72)(53,63)(54,74)(55,65)(56,76)(57,67)(58,78)(59,69)(60,80)(81,110)(82,101)(83,112)(84,103)(85,114)(86,105)(87,116)(88,107)(89,118)(90,109)(91,120)(92,111)(93,102)(94,113)(95,104)(96,115)(97,106)(98,117)(99,108)(100,119)(121,147)(122,158)(123,149)(124,160)(125,151)(126,142)(127,153)(128,144)(129,155)(130,146)(131,157)(132,148)(133,159)(134,150)(135,141)(136,152)(137,143)(138,154)(139,145)(140,156)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(34,40)(35,39)(36,38)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,117)(102,116)(103,115)(104,114)(105,113)(106,112)(107,111)(108,110)(118,120)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,160)(155,159)(156,158), (1,98,11,88)(2,99,12,89)(3,100,13,90)(4,81,14,91)(5,82,15,92)(6,83,16,93)(7,84,17,94)(8,85,18,95)(9,86,19,96)(10,87,20,97)(21,103,31,113)(22,104,32,114)(23,105,33,115)(24,106,34,116)(25,107,35,117)(26,108,36,118)(27,109,37,119)(28,110,38,120)(29,111,39,101)(30,112,40,102)(41,133,51,123)(42,134,52,124)(43,135,53,125)(44,136,54,126)(45,137,55,127)(46,138,56,128)(47,139,57,129)(48,140,58,130)(49,121,59,131)(50,122,60,132)(61,149,71,159)(62,150,72,160)(63,151,73,141)(64,152,74,142)(65,153,75,143)(66,154,76,144)(67,155,77,145)(68,156,78,146)(69,157,79,147)(70,158,80,148), (1,57,11,47)(2,58,12,48)(3,59,13,49)(4,60,14,50)(5,41,15,51)(6,42,16,52)(7,43,17,53)(8,44,18,54)(9,45,19,55)(10,46,20,56)(21,73,31,63)(22,74,32,64)(23,75,33,65)(24,76,34,66)(25,77,35,67)(26,78,36,68)(27,79,37,69)(28,80,38,70)(29,61,39,71)(30,62,40,72)(81,122,91,132)(82,123,92,133)(83,124,93,134)(84,125,94,135)(85,126,95,136)(86,127,96,137)(87,128,97,138)(88,129,98,139)(89,130,99,140)(90,131,100,121)(101,149,111,159)(102,150,112,160)(103,151,113,141)(104,152,114,142)(105,153,115,143)(106,154,116,144)(107,155,117,145)(108,156,118,146)(109,157,119,147)(110,158,120,148), (1,35)(2,26)(3,37)(4,28)(5,39)(6,30)(7,21)(8,32)(9,23)(10,34)(11,25)(12,36)(13,27)(14,38)(15,29)(16,40)(17,31)(18,22)(19,33)(20,24)(41,71)(42,62)(43,73)(44,64)(45,75)(46,66)(47,77)(48,68)(49,79)(50,70)(51,61)(52,72)(53,63)(54,74)(55,65)(56,76)(57,67)(58,78)(59,69)(60,80)(81,110)(82,101)(83,112)(84,103)(85,114)(86,105)(87,116)(88,107)(89,118)(90,109)(91,120)(92,111)(93,102)(94,113)(95,104)(96,115)(97,106)(98,117)(99,108)(100,119)(121,147)(122,158)(123,149)(124,160)(125,151)(126,142)(127,153)(128,144)(129,155)(130,146)(131,157)(132,148)(133,159)(134,150)(135,141)(136,152)(137,143)(138,154)(139,145)(140,156) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(34,40),(35,39),(36,38),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(78,80),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88),(95,100),(96,99),(97,98),(101,117),(102,116),(103,115),(104,114),(105,113),(106,112),(107,111),(108,110),(118,120),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,130),(128,129),(137,140),(138,139),(141,153),(142,152),(143,151),(144,150),(145,149),(146,148),(154,160),(155,159),(156,158)], [(1,98,11,88),(2,99,12,89),(3,100,13,90),(4,81,14,91),(5,82,15,92),(6,83,16,93),(7,84,17,94),(8,85,18,95),(9,86,19,96),(10,87,20,97),(21,103,31,113),(22,104,32,114),(23,105,33,115),(24,106,34,116),(25,107,35,117),(26,108,36,118),(27,109,37,119),(28,110,38,120),(29,111,39,101),(30,112,40,102),(41,133,51,123),(42,134,52,124),(43,135,53,125),(44,136,54,126),(45,137,55,127),(46,138,56,128),(47,139,57,129),(48,140,58,130),(49,121,59,131),(50,122,60,132),(61,149,71,159),(62,150,72,160),(63,151,73,141),(64,152,74,142),(65,153,75,143),(66,154,76,144),(67,155,77,145),(68,156,78,146),(69,157,79,147),(70,158,80,148)], [(1,57,11,47),(2,58,12,48),(3,59,13,49),(4,60,14,50),(5,41,15,51),(6,42,16,52),(7,43,17,53),(8,44,18,54),(9,45,19,55),(10,46,20,56),(21,73,31,63),(22,74,32,64),(23,75,33,65),(24,76,34,66),(25,77,35,67),(26,78,36,68),(27,79,37,69),(28,80,38,70),(29,61,39,71),(30,62,40,72),(81,122,91,132),(82,123,92,133),(83,124,93,134),(84,125,94,135),(85,126,95,136),(86,127,96,137),(87,128,97,138),(88,129,98,139),(89,130,99,140),(90,131,100,121),(101,149,111,159),(102,150,112,160),(103,151,113,141),(104,152,114,142),(105,153,115,143),(106,154,116,144),(107,155,117,145),(108,156,118,146),(109,157,119,147),(110,158,120,148)], [(1,35),(2,26),(3,37),(4,28),(5,39),(6,30),(7,21),(8,32),(9,23),(10,34),(11,25),(12,36),(13,27),(14,38),(15,29),(16,40),(17,31),(18,22),(19,33),(20,24),(41,71),(42,62),(43,73),(44,64),(45,75),(46,66),(47,77),(48,68),(49,79),(50,70),(51,61),(52,72),(53,63),(54,74),(55,65),(56,76),(57,67),(58,78),(59,69),(60,80),(81,110),(82,101),(83,112),(84,103),(85,114),(86,105),(87,116),(88,107),(89,118),(90,109),(91,120),(92,111),(93,102),(94,113),(95,104),(96,115),(97,106),(98,117),(99,108),(100,119),(121,147),(122,158),(123,149),(124,160),(125,151),(126,142),(127,153),(128,144),(129,155),(130,146),(131,157),(132,148),(133,159),(134,150),(135,141),(136,152),(137,143),(138,154),(139,145),(140,156)])
Matrix representation ►G ⊆ GL6(𝔽41)
34 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 21 | 0 | 0 |
0 | 0 | 37 | 40 | 0 | 0 |
0 | 0 | 10 | 33 | 1 | 18 |
0 | 0 | 29 | 2 | 9 | 40 |
1 | 34 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 21 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 33 | 1 | 18 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 12 | 13 | 0 |
0 | 0 | 0 | 4 | 0 | 17 |
0 | 0 | 29 | 37 | 27 | 19 |
0 | 0 | 0 | 40 | 0 | 37 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 2 | 9 | 0 |
0 | 0 | 0 | 1 | 0 | 37 |
0 | 0 | 32 | 25 | 11 | 10 |
0 | 0 | 0 | 21 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 6 | 0 | 0 |
0 | 0 | 34 | 17 | 0 | 0 |
0 | 0 | 38 | 5 | 24 | 11 |
0 | 0 | 20 | 24 | 26 | 17 |
G:=sub<GL(6,GF(41))| [34,40,0,0,0,0,1,0,0,0,0,0,0,0,1,37,10,29,0,0,21,40,33,2,0,0,0,0,1,9,0,0,0,0,18,40],[1,0,0,0,0,0,34,40,0,0,0,0,0,0,1,0,0,0,0,0,21,40,33,0,0,0,0,0,1,0,0,0,0,0,18,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,14,0,29,0,0,0,12,4,37,40,0,0,13,0,27,0,0,0,0,17,19,37],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,0,32,0,0,0,2,1,25,21,0,0,9,0,11,0,0,0,0,37,10,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,34,38,20,0,0,6,17,5,24,0,0,0,0,24,26,0,0,0,0,11,17] >;
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 10A | 10B | 10C | ··· | 10L | 20A | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 20 | 20 | 20 | 2 | 2 | 10 | 10 | 20 | 20 | 20 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C5⋊D4 | C5⋊D4 | Q8○D8 | D20.35C23 |
kernel | D20.35C23 | C20.C23 | C2×C5⋊Q16 | Q8.Dic5 | D4.8D10 | D4.9D10 | D4.10D10 | C5×2- (1+4) | C5×D4 | C5×Q8 | 2- (1+4) | C2×Q8 | C4○D4 | D4 | Q8 | C5 | C1 |
# reps | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 | 3 | 1 | 2 | 6 | 8 | 12 | 4 | 2 | 2 |
In GAP, Magma, Sage, TeX
D_{20}._{35}C_2^3
% in TeX
G:=Group("D20.35C2^3");
// GroupNames label
G:=SmallGroup(320,1510);
// by ID
G=gap.SmallGroup(320,1510);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,184,675,1684,235,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^20=b^2=e^2=1,c^2=d^2=a^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^11,b*c=c*b,b*d=d*b,e*b*e=a^15*b,d*c*d^-1=a^10*c,c*e=e*c,d*e=e*d>;
// generators/relations